
DNNs as Layers of Cooperating Classifiers

Marelie H. Davel, Marthinus W. Theunissen, Arnold M. Pretorius, Etienne Barnard
Multilingual Speech Technologies, North-West University, South Africa; and CAIR, South Africa.

{marelie.davel, tiantheunissen, arnold.m.pretorius, etienne.barnard}@gmail.com

Abstract

A robust theoretical framework that can describe and predict
the generalization ability of DNNs in general circumstances
remains elusive. Classical attempts have produced complex-
ity metrics that rely heavily on global measures of compact-
ness and capacity with little investigation into the effects
of sub-component collaboration. We demonstrate intriguing
regularities in the activation patterns of the hidden nodes
within fully-connected feedforward networks. By tracing the
origin of these patterns, we show how such networks can be
viewed as the combination of two information processing sys-
tems: one continuous and one discrete. We describe how these
two systems arise naturally from the gradient-based optimiza-
tion process, and demonstrate the classification ability of the
two systems, individually and in collaboration. This perspec-
tive on DNN classification offers a novel way to think about
generalization, in which different subsets of the training data
are used to train distinct classifiers; those classifiers are then
combined to perform the classification task, and their consis-
tency is crucial for accurate classification.

1 Introduction
One of the central tenets of computational learning theory
(CLT) is that the ability of a machine-learning system to gen-
eralize to unseen data results from its compactness. That is,
if the system employs a number of parameters that is small
relative to the number of training samples that it processes
appropriately, we can be confident that the system will gen-
eralize well to unseen samples drawn from the same distri-
bution as the training data.

Several observations in recent years have raised ques-
tions about the applicability of this explanation in sys-
tems such as deep neural networks (DNNs). Most strik-
ingly, Zhang et al. (Zhang et al. 2016) showed a number
of cases where networks with very large capacity achieve
excellent generalization performance. Although this work
lead to a flurry of activity (Shwartz-Ziv and Tishby 2017;
Bartlett, Foster, and Telgarsky 2017; Neyshabur et al. 2017;
Dinh et al. 2017) and some controversy, it actually confirms
long-observed weaknesses in the classical CLT bounds: go-
ing back to at least 1992 (Cohn and Tesauro 1992), it has
been noted that those bounds are often so conservative as to

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

not be useful in practice. It should also be noted that while
parametric compactness is a sufficient condition for gener-
alization, it has never been shown to be a necessary condi-
tion (Kawaguchi, Pack Kaelbling, and Bengio 2019). Hence,
the widespread search for a definition of model complexity
that renders CLT applicable to DNN-like classifiers may in
the long run prove fruitless.

In the current work, we investigate the capabilities of
DNNs by studying the behavior of hidden nodes in some de-
tail, limiting our attention to the conceptually simplest case
of fully-connected feedforward classification networks with
ReLU activation functions. We show that intriguing regular-
ities in the activation patterns of nodes within such networks
exist; and can be understood by analyzing the DNN training
process as an interaction between two processes: one dis-
crete and descriptive of the input patterns that a node is re-
sponsive to, and the other continuous and concerned with
the magnitude of activation. We verify that either of these
processes can be used as basis for deriving node-based clas-
sifiers from a trained network. These observations suggest
a novel way of viewing the behavior of DNNs as layers of
cooperating classifiers. Although we do not directly relate
this point of view to their generalization capabilities, our
work suggests some novel perspectives that may contribute
to such an understanding.

2 An unexpected observation on node
behavior

As motivated in Section 1, we wish to understand the role of
the hidden nodes within a trained DNN. By design, each of
the output nodes corresponds to class membership, whereas
each of the input nodes responds to a particular featurtee
(and is therefore quite agnostic about class membership).
Also, in a feedforward network without skipped connec-
tions, each layer of node activations is a comprehensive sum-
mary or “state” (Jiang et al. 2019): taken together, a layer
of activations fully determines the activations in each of the
subsequent layers.

In a ReLU network, where a node is either activated or
not, one can approach this question by asking how respon-
sive each node is to inputs belonging to the different classes.
Figure 1 shows an example of the activation patterns that we
have observed in numerous ReLU-activated networks of var-



Figure 1: Percentage of class samples that activate each hid-
den and output node, of a trained network (for MNIST digit
recognition) with 10 hidden layers and 100 nodes per layer.
Each class is indicated with a different color, and the nodes
are ordered from input to output on the horizontal axis – that
is, nodes 0 - 99 correspond to the first hidden layer, 100 -
199 form the next hidden layer, etc. The final 10 nodes (af-
ter index 1000) are in the output layer.

ious architectures, trained with different algorithms on dif-
ferent classification tasks.

We observe that nodes in the first few layers are neither
highly specific nor sensitive to any particular class: most
nodes in the first two hidden layers are activated by some
samples from several classes. Deeper in the network, how-
ever, the nodes become highly selective: each node is acti-
vated by either none of the samples in a class or virtually
all the samples in the class. This regular pattern occurs over
a wide range of conditions, as long as the network has suf-
ficiently many layers and nodes, and arises despite the ran-
dom initialization of weights. It therefore seems to indicate
a fundamental aspect of the way a DNN arranges itself to
perform classification, and calls for an explanation in terms
of the DNN training process.

Earlier work on the complexity analysis of
DNNs (Montúfar et al. 2014; Raghu et al. 2017;
Eldan and Shamir 2016) has observed that hidden units
in deeper layers produce many additional distinct linear
regions in feature space; and that with depth, layer behavior
becomes more abstract and class-specific. However, the
observed transition with depth is strikingly sharp, and not
spread out over available depth as one would expect. Below,
we first introduce a measure that makes it easier to quantify
the transition from class-agnostic to class-selective nodes,
and then proceed with an analysis that investigates its
genesis during gradient-based training.

3 Layer Perplexity
Insight about the discrete dynamics of DNN training can be
gained by investigating the number of different binary acti-
vation patterns (from here referred to as patterns) that oc-
curs at each hidden layer. Each pattern consists of a vector
of binary values indicating whether each node in the layer is

active for a given input sample, or not. If the total number of
occurrences of each pattern for a layer l as a response to all
samples from a class c is given by the set K(c, l), then the
entropy of the patterns for class c at layer l can be defined as

H(c, l) = −
∑

n∈K(c,l)

n

Nc
ln

(
n

Nc

)
, (1)

where Nc is the total number of samples belonging to class
c; and the perplexity of the class c at layer l is defined as

P (c, l) = eH(c,l) (2)

In this context, entropy defines the average information con-
tent in the set of possible patterns and their frequencies, and
perplexity provides an estimate of the total amount of infor-
mation related to the patterns used by layer l to represent
all the samples in class c. Minimal information is indicated
by a perplexity of 1, which implies that the layer represents
every sample of the class as an identical pattern. Maximal
information is indicated by a perplexity value equal to the
total number of samples in the class: this happens when ev-
ery sample is represented by a unique pattern at the current
layer.

3.1 Trained models
We conduct our experiments in a relatively simple setup. Our
aim is to understand trends, while retaining the key elements
that are likely to be common to high-performance DNNs.
Thus, we use only fully-connected feedforward networks
with highly regular topologies, and investigate their behav-
ior on two widely-used image-recognition tasks, namely
MNIST (Lecun et al. 1998) and FMNIST (Xiao, Rasul, and
Vollgraf 2017). No data augmentation is employed. Refine-
ments such as drop-out and batch normalization are also
avoided in order to focus on the essential mechanisms of
DNN learning. (Such refinements do not contribute much to
test set accuracy in this setting, in contrast to data augmen-
tation, which does (Cirean et al. 2010; Simard, Steinkraus,
and Platt 2003).)

All hidden nodes have Rectified Linear Unit (ReLU) acti-
vation functions, and a standard mean squared error (MSE)
loss function is employed, unless stated otherwise. The
popular Adam (Kingma and Ba 2014) optimizer is used
to train the networks after normalized uniform initializa-
tion with three different training seeds (LeCun et al. 2012),

Figure 2: Test error for networks with varying depth and a
width of 100 nodes (left) and varying width and a depth of
10 layers (right) trained on MNIST (blue curve, left vertical
axis) and FMNIST (orange curve, right vertical axis).



Figure 3: Per-layer mean perplexity values with changing depth (top) and width (bottom) for MNIST (left) and FMNIST (right).

and the global learning rates are manually adjusted to en-
sure training set convergence. This is verified by ensuring
that the performance obtained is comparable with prior re-
sults reported on both MNIST (Lecun et al. 1998; Simard,
Steinkraus, and Platt 2003) and FMNIST (Novak et al. 2018;
Agarap 2018), where similar topologies were employed. We
implement early stopping by choosing networks with the
smallest validation error.

The performance of the trained models are shown in Fig-
ure 2. Our first analysis investigates several networks of
fixed width and increasing depth. “Depth” here refers to the
number of hidden layers, without counting the input or out-
put layers. For a width of 100 nodes per layer, both the
MNIST and FMNIST systems initially achieve decreasing
error rates as the number of hidden layers grows, but the per-
formance quickly saturates. However, increasing the number
of layers (and thus parameters) beyond this level does not
degrade performance, even when as many as 20 hidden lay-
ers are employed. (Results here shown up to a a depth of
10.) In the second analysis, network depth is kept constant
at 10 layers, and the width (number of nodes per layer) is
adjusted. As with increased depth, increased width leads to
a similar saturation in performance.

3.2 Perplexity results
Using the trained networks from Figure 2, we now analyse
the distinctiveness of their activation patterns. The per-layer
mean perplexity of each network is shown in Figure 3, with
mean values obtained by averaging over all classes. The per-
plexities are measured with regard to the test set samples:
with the focus of our analyses being on generalization, we
are interested in encodings that are applicable during cate-
gorization of unseen samples, and not only those created for
optimization purposes.

There are several interesting observations that can be
made from these graphs. Notice the relatively sharp drop
in perplexity values for all networks, and take note that the
drop is more gradual for the FMNIST models and sharper
for wider networks. Additionally, for the networks with suf-
ficient depth and width:

• The perplexity in the later layers is very near 1. That is,
all activation patterns have become fully class-specific.

• The perplexity values in the first 2 layers are almost equal
to the total number of samples for each class (approxi-
mately 1,000 for the test sets for both MNIST and FM-
NIST), which means that an individual encoding is cre-
ated per sample.

• The transition from high perplexity to low perplexity is
very similar across networks.

Lastly, notice that if the network width is below some thresh-
old, the perplexity values in the earlier layers reduce ac-
cordingly. This cannot be due to a lack of representational
power seeing as even the smallest layer (20 nodes) can rep-
resent more patterns than required by the number of training
samples. Taking into account their lower test error, this sug-
gests that wider networks represent sample information in a
way that is more conducive to good generalization. This phe-
nomenon was recently explored by (Brutzkus and Globerson
2019) where it is attributed to better weight exploration and
a small number of observed prototype weight vectors.

3.3 Discussion
Provided the network is large enough, there seems to be a
range of earlier layers within which the nodes have high
(virtually maximal) perplexity, and a corresponding range
of later layers where the nodes have relatively low (virtu-
ally minimal) perplexity. Furthermore, the transition from
the former behavior to the latter is consistent across all net-
works, irrespective of size, as long as they are deeper and
wider than a task-specific threshold. After this transition, the
class-specific discrete behavior in the excess layers is rela-
tively trivial. (Perplexity is already at a minimum.)

The nodes in the earlier layers appear to perform most
of the information processing required to produce a feature
space that supports the ability to differentiate among sam-
ples relating to different classes. In this setup, the deeper
layers effectively produce no new benefits and merely prop-
agate the information forward through the network. The for-
ward propagation of information, at this point, takes the
form of a class-specific encoding, which is unique to each
layer. By varying either width or depth, the same message
emerges: a task-specific threshold exists with regard to both
width and depth, beyond which network behavior is strik-
ingly regular and similar, irrespective of network size.



4 Theoretical perspective

In Section 3 it was shown that, once trained, a ReLU-
activated multilayer perceptron (MLP) exhibits behavior
that is clearly discrete: the activation patterns of each layer
display distinct encodings, closely related to sample encod-
ings in the first layer, and class encodings in the later lay-
ers. In this section, we analyze the training process in or-
der to determine how the stochastic gradient descent (SGD)
equations give rise to this discrete behavior. The MLP we
study is allowed an arbitrary number of layers and nodes
per layer, with each layer fully specified by its weight ma-
trix. Initially we consider an arbitrary loss function but then
restrict the analysis to mean squared error (MSE) and cross-
entropy (CE) loss, using matching activations in the output
layer (linear or softmax, respectively). We use wi,j,k to de-
note the individual weight from node k in layer i−1 to node
j in layer i. Bias is dealt with as an extra weight in the first
layer only, associated with an extra feature of value 1. (Given
sufficient width, a bias node is not necessary beyond the first
layer of an MLP.)

4.1 Gradient-based optimization

Gradient-based optimization has many variations but is es-
sentially a straightforward process. In its basic form, each
weight update is accumulated over a batch of random sam-
ples, each sample contributing a ∆wi,j,k. Each sample-
specific update is proportional to the derivative of the error
function E with regard to this weight, and the learning rate
η (which could potentially be adaptive, as with Adam). In
practice, the derivative of the error function with regard to
each parameter is calculated using backpropagation

∆wi,j,k = −η ∂E

∂wi,j,k
= −ηβi,jai−1,k (3)

with ai−1,k the activation result at layer i−1 for node k and
βi,j as defined below. Using zi,j to describe the sum of the
input to node j in layer i, and defining the symbols

αi,j =
∂ai,j
∂zi,j

λj =
∂E

∂aN,j
(4)

βi,j is calculated by counting through all n forward connec-
tions from node j to the next layer, working backwards from
the last layer (also counting the output layer) N :

βi,j =

{
αi,j

∑
n
wi+1,n,jβi+1,n if i 6= N

αi,jλj if i = N
(5)

This recursive update rule is important for computational ef-
ficiency but, while not commonly done, the derivative can

also be written as an iterative expression1:

βi,j =

Bi−1∑
b=0

λIi,j(N,b)

N∏
g=i

αg,Ii,j(g,b)

N∏
r=i+1

wr,Ii.j(r,b),Ii,j(r−1,b) (6)

where BL =


N∏

m=L+1

sm ifL 6= N

1 ifL = N

Ii,j(r, b) =

{
(b÷Br) mod sr if r 6= i

j if r = i

with si the number of nodes in layer i, and each Ii,j(r, b)
indexing function specific to the layer and node position of
the βi,j required. When inner node activations are ReLUs,
this equation simplifies further. Noting that

Relu(x) = xT (x) (7)

where T (x) =

{
1 if x > 0

0 if x ≤ 0
(8)

the weight update becomes

∆wi,j,k = −η ai−1,k
Bi−1∑
b=0

λIi,j(N,b)

N−1∏
g=i

T (zg,Ii,j(g,b))

N∏
r=i+1

wr,Ii,j(r,b),Ii,j(r−1,b) (9)

In effect, the b index runs through all possible paths from
node j in layer i to each of the nodes in layer N , the g in-
dex runs through all the activation values of a single path,
and the r index multiplies the weights along the same path.
Using MSE as loss function and linear activation functions
in the outer layer results in λi,j = zN,Ii,j(N,b) − yIi,j(N,b)

where yj the true target value at the outer node j, that is, the
classification gap. Note that λi,j has the same form when
using a cross entropy loss function with softmax activation
functions in the outer layer, as long as one-hot encodings are
used for classification targets.

Per sample, each weight update then only takes into ac-
count the activation strength at node k feeding into the
weight, and all the active paths – where all the T (.) values
are 1 – supported from node j onward. Each path contributes
a single product of all the weights along the active path, mul-
tiplied by the classification gap at the path end point. The
T (.) values can therefore by viewed as switches, selecting
which samples contribute to a weight update at each point in
the network, and the weight update rewritten as:

∆wi,j,k = η
∑
s∈S

∑
p∈Ps

(asi−1,k)(

N−i∏
g=1

w′pg
)(ys − zsN,pN−i

)

(10)
1Derivations are included in an extended version of this paper

(http://engineering.nwu.ac.za/multilingual-speech-technologies-
must/publications).



where S consists of all the samples active at both nodes j
and k, Ps is the set of active paths that starts at node j (gen-
erated specifically by s) and w′pg

runs through the g weights
along the active path p = p1, p2, . . . pN−i. The s superscript
emphasizes that these are sample-specific values.

4.2 Two collaborative systems
The update process of Equation 10 can be viewed as two
interacting systems: one continuous and one discrete, both
utilizing the same underlying network architecture and pa-
rameters. Each node plays a role in both systems:

1. The discrete system associates an “on/off” value with ev-
ery single sample-node pair, depending on whether the
node is active or not for that sample. This system is fully
specified by the T (.) values of Equation 9. Nodes can
therefore be considered as switched either on or off, giv-
ing rise to a discrete information processing system that
creates a discrete set of samples at each node.

2. The continuous system associates a continuous value with
each sample-node pair (the pre-activation value of the
sample at the given node) and updates the continuous val-
ues of the weight vector feeding into this node during gra-
dient descent.

The training process utilizes both systems to optimize the
network, but the relative importance of the two systems with
regard to eventual classification ability changes, both during
the training process and through the layers of the network.
Each node in effect acts as a local feature transformation,
combining multiple features from an earlier level to form
a single new feature, made available to the next level. The
node only optimizes its weights (weights feeding into the
node) with regard to the set of samples it is sensitive to: with
regard to these, it determines the relative importance of the
features available at the previous layer in closing the clas-
sification gap it is aware of. The training process uses the
two systems interactively: (1) During the forward pass, the
discrete systems determines whether a sample should be in-
cluded or excluded from the set of similar samples at that
node. (2) During the backward pass, only the selected sam-
ples are used by the continuous system to update the relative
weighting of the input features: creating a new feature more
attuned to these specific samples, and these only.

This also means that the optimization process is simulta-
neously taking into account both global and local informa-
tion. Globally, the extent to which all the collaborating nodes
have already “solved” the task posed by a specific sample
determines the influence of that sample, while locally, each
node that is active for an unsolved sample adjusts its param-
eters according to its own set of active samples only. Locally,
nodes solve subsets of the class differentiation task; globally,
nodes in a layer cooperate.

5 Empirical confirmation for two systems
One way in which to determine the extent to which the dis-
crete and continuous systems each exists in own right, is to
analyze the classification ability of each system individually.
We ask how well each system would be able to classify un-
seen samples, given either the discrete information available

per sample (which nodes are on or off) or the continuous
information per sample (pre-activation values at each node).

5.1 Nodes as classifiers
We now interpret each node as a classifier, implicitly esti-
mating P (z|yn), where z is the pre-activation value and yn
a class. A discrete, continuous and combined estimate of this
value is created at each node:

• discrete: if z > 0, P (z|yn) is estimated as the ratio of
class n training samples with positive activation values
with regard to all class n training samples; 1 minus this
value otherwise.

• continuous: the estimate provided by a kernel density es-
timator trained using all class n training data activation
values observed at this node.

• combined: using the discrete estimate if z ≤ 0, the con-
tinuous estimate otherwise.

This estimate is combined with the prior probability P (yn)
of a class being observed to estimate the posterior P (yn|z):

P (yn|z) =
P (z|yn)P (yn)∑
m P (z|ym)P (ym)

(11)

We view the nodes as independent classifiers (we ignore
possible dependence) and multiply the probability estimates
per class over all the nodes in a layer, to obtain a layer-
specific probability estimate for each of the three systems.
(In practice, the log probabilities are summed.) These proba-
bility estimates can then be used directly to classify samples
based on maximum probability, creating three layer-specific
classifiers for each layer in the network: a continuous, a dis-
crete and a combined classifier. While neither the nodes nor
the layers use these probabilities directly, they provide in-
sight into the information available locally at each point in
the network. By evaluating layer-specific classification abil-
ity at different layers and at different stages in the training
process, we can better demonstrate the interaction between
the discrete and continuous systems.

5.2 Classification ability during training
Using the nodes as individual classifiers, we evaluate the
performance of the discrete, continuous and combined sys-
tems generated from the trained models in Figure 2, during
the training process. In Figure 4, we demonstrate the perfor-
mance of an MLP with 6 hidden layers of 100 nodes each,
trained on the FMNIST classification dataset; the behavior
of this model during training expresses the overall tenden-
cies for all the analysed models very well.

The most striking observation is that, at the later hidden
layers, the accuracies of the three systems are virtually iden-
tical. In the first layer, the accuracy of the combined sys-
tem is higher than both the discrete and continuous systems.
This difference in classification accuracy among the three
systems becomes smaller at later layers in the network, un-
til it disappears. While it is to be expected that the combined
system would outperform the other two (since its probability
estimates have access to information pertaining to both the



Figure 4: Train and test accuracies of the discrete, continuous and combined systems as measured on an FMNIST 6x100 DNN.
System performance is shown after specific epochs. The red dotted line (“network”) indicates the performance of the MLP itself
when evaluated in the conventional manner.

continuous and discrete subsystems) this is not what hap-
pens: at later layers, the other two systems are able to per-
form at levels comparable to the system subsuming them.

Additionally, it can be seen that the accuracies in the later
layers improve visibly over iterations of learning while the
performance of the earlier layers improves less. This rein-
forces the idea that the function of earlier layers is not to
classify samples into the classes involved in the global clas-
sification problem, but instead act as general sample differ-
entiators (that is, earlier layers attempt to group and solve
subsets of the main task, which may not necessarily be class-
specific); later layers use these elements to more efficiently
perform the classification task. During training, the overall
accuracy of each system in later layers increases on the train
and on the test set until it reaches the same, or slightly bet-
ter accuracy as the network itself. At the end of the first
epoch, significant training has already occurred. We there-
fore also investigate how the performance of these systems
changes during mini-batch updates in the first epoch, as
shown in Figure 5. Note how poorly the continuous sys-
tem performs initially (relative to the discrete system), until
the training process stabilises and the previously discussed
trends emerge.

Similar trends2 are observed when changing either net-
work width or depth. Figure 6 depicts the classification ac-
curacy of the three systems for a set of FMNIST networks
with fixed width (100 nodes) and increasing depth (1 to 9
layers). It is striking to note that the three systems start over-
lapping when sufficient depth becomes available, but strug-

2Additional results not shown here are included in the extended
version of this paper.

gle to beforehand. Similarly, when the network layers lack
width, the earlier layers underperform significantly. This is
especially true for the discrete system. As expected, there is
a clear increase in accuracy (across all systems) in the later
layers with an increase in width. Curiously, the continuous
performance appears to reduce with an increase in width in
the first layers.

While not shown here, trends for FMNIST and MNIST
are similar, except that for MNIST (1) the depth at which
the three systems converge is earlier; (2) higher accuracies
are observed overall; and (3) there is an anomalously low
performance measurement for the discrete system at one of
the layershttp://engineering.nwu.ac.za/multilingual-speech-
technologies-must/publications of the model with a width
of 20. (We know that the discrete subsystem tends to un-
derperform significantly at low widths.) Finally, it is clear
that the the nodes at each layer have the ability to solve the
classification task when applied in collaboration. It is worth
noting that, in the earlier layers, nodes are formed that range
from very general (active for many samples) to very specific
(active for only one or two samples).

6 Alternative design choices
The trends presented in this paper are based on the learn-
ing dynamics of an MLP using ReLU activation functions.
This section briefly discusses to what extent the findings are
applicable to deep learning models with alternative design
choices, including activation functions that are not piece-
wise linear. While we do not extend our analysis to more
complex deep learning architectures, we do refer to related
work where analogous observations were made with regards



Figure 5: The same analysis (for test data only) as in Fig-
ure 4, except that results are not shown per epoch but after
specific mini-batch updates in the first epoch.

Figure 6: Discrete, continuous and combined system test ac-
curacies for networks with varied depth (1-9) (FMNIST).

to other architectures.
It is not too unexpected that ReLUs – with their piece-

wise linear characteristics – would demonstrate discrete be-
havior, but what happens if the activation function has a con-
tinuous nature? Specifically, we repeat the above two-system
analysis using sigmoid activation functions instead of Re-
LUs. This time we define the node as “switched on” for all
activation values greater than 0.5 (and as “ switched off”
otherwise). Intuitively this choice makes sense, as this is the
point at which the sigmoid function has maximal gradient
and activation values are expected to diverge away from this
value toward 0 or 1. Somewhat surprisingly, the discrete sys-
tem again emerges very clearly, as shown in Figure 7, where
classification performance is demonstrated for a 7x100 MLP
that is similar to previous models, except that sigmoid ac-
tivations and a CE loss function is used. We see that the
two systems in the sigmoid-activated network behave sim-

ilarly to those in the ReLU-activated networks, except that
the continuous system outperforms the discrete system by a
small margin in deeper layers. Other trends remain.

In addition, we empirically confirm that the trends dis-
cussed in Sections 3 and 5 are present in ReLU-activated
MLPs with several alternative optimizers, loss functions,
output functions, and classification data sets. We observed
quantitative variations but no qualitative inconsistencies for
the alternatives tested. We did find that choices that intro-
duce a form of noise into the training process (such as batch
normalization, explicit training data noise or non-adaptive
optimizers) generally increase layer perplexities and reduce
hidden unit saturation.

It has long been known that Convolutional Neural Net-
work (CNN) layers create feature spaces in a hierarchical
structure, with earlier layers representing more general sam-
ple information and later layers becoming more specific, of-
ten thought of as a transition from local to global feature
information (Zeiler and Fergus 2013; Ma et al. 2015). In
(Alain and Bengio 2016) it was found that by training lin-
ear classifiers using the features produced by each layer in
popular CNN models, such as Inception v3 and Resnet-50,
one can estimate the utility (in terms of linear separability)
of feature representations at each layer. Similarly, in (Mon-
tavon, Braun, and Müller 2011) kernel analysis was used to
rate the representations produced by each layer in MLPs and
CNNs according to their simplicity and power to predict
classes accurately. While focused on layers as classifiers,
rather than smaller elements (as we do), the results of both of
the latter works are consistent with our own in that: (1) later
feature spaces perform better than earlier ones, (2) the transi-
tion from general to class-related features is monotonic and
surprisingly regular, and (3) the transition is more gradual
for a task with more class variance and overlap. This sug-
gests that some of our findings may be extendable to more
complex, heavily engineered, deep learning architectures.

The heart of the results in this paper is based on the insight
that weight vectors (fanning into a node) can be analyzed as
isolated units, each trained to reduce a portion of the global
error in terms of a sub-population (within which the samples
are inherently similar) of the training set, by utilizing either
a hard (ReLU) or weighted membership rule. It is, therefore,
very likely that such an analysis is applicable to other deep
learning models built on the principle of updating weight
vectors through gradient descent in conjunction with a non-
linear activation function.

Figure 7: Train and test accuracy of the discrete and con-
tinuous system in a 7x100 network using sigmoid activation
functions (FMNIST).



7 Conclusion
In this work we presented interesting regularities in the
class-related activation patterns of nodes within a deep
ReLU-activated network. We showed that fully-connected
feedforward networks systematically “compress” their class
discrimination into the early layers of a network, across a
wide range of parameters and tasks. The origin of this be-
havior was studied through a theoretical investigation into
the gradient-based optimization of such networks, highlight-
ing the role of locally relevant nodes in solving the network-
wide task. Specifically, nodes can be shown to create dis-
crete clusters of samples that they are particularly attuned
to. This phenomenon suggests that we investigate the dis-
crete and continuous aspects of such networks separately,
and we have shown that both discrete and continuous node-
based probability estimators can be constructed to perform
highly accurate layer-by-layer classification.

Our analysis suggests that the generalization strength of
DNNs arises from the collaborative contributions of the sep-
arate classifiers (some very general, some very specific) that
are formed by individual nodes, and we are currently in-
vestigating how to quantify the properties of such distinct
but collaborative units, which select variable sets of training
samples to optimize their training set accuracy.

References
Agarap, A. F. 2018. Deep learning using Rectified Linear
Units (ReLU). arXiv preprint arXiv:1803.08375.
Alain, G., and Bengio, Y. 2016. Understanding intermediate
layers using linear classifier probes. ArXiv abs/1610.01644.
Bartlett, P. L.; Foster, D. J.; and Telgarsky, M. J. 2017.
Spectrally-normalized margin bounds for neural networks.
In Advances in Neural Information Processing Systems 30,
6240–6249.
Brutzkus, A., and Globerson, A. 2019. Why do larger mod-
els generalize better? A theoretical perspective via the XOR
problem. In Chaudhuri, K., and Salakhutdinov, R., eds., Pro-
ceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning
Research, 822–830. Long Beach, California, USA: PMLR.
Cirean, D. C.; Meier, U.; Gambardella, L. M.; and Schmid-
huber, J. 2010. Deep, big, simple neural nets for handwritten
digit recognition. Neural Computation 22(12):3207–3220.
Cohn, D., and Tesauro, G. 1992. How tight are the Vapnik-
Chervonenkis bounds? Neural Computation 4(2):249–269.
Dinh, L.; Pascanu, R.; Bengio, S.; and Bengio, Y. 2017.
Sharp minima can generalize for deep nets. arXiv preprint
arXiv:1703.04933v2.
Eldan, R., and Shamir, O. 2016. The power of depth for
feedforward neural networks. In Conference on learning
theory, 907–940.
Jiang, Y.; Krishnan, D.; Mobahi, H.; and Bengio, S. 2019.
Predicting the generalization gap in deep networks with
margin distributions. arxiv preprint (In ICLR 2019)
arXiv:1810.00113v2.

Kawaguchi, K.; Pack Kaelbling, L.; and Bengio, Y.
2019. Generalization in deep learning. arXiv preprint
arXiv:1710.05468v5.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint (In ICLR 2014)
arXiv:1412.6980.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
LeCun, Y. A.; Bottou, L.; Orr, G. B.; and Müller, K.-R. 2012.
Efficient backprop. In Neural networks: Tricks of the trade.
Springer. 9–48.
Ma, C.; Huang, J.-B.; Yang, X.; and Yang, M.-H. 2015. Hi-
erarchical convolutional features for visual tracking. 2015
IEEE International Conference on Computer Vision (ICCV)
3074–3082.
Montavon, G.; Braun, M. L.; and Müller, K.-R. 2011. Kernel
analysis of deep networks. J. Mach. Learn. Res. 12:2563–
2581.
Montúfar, G.; Pascanu, R.; Cho, K.; and Bengio, Y. 2014.
On the number of linear regions of deep neural networks.
ArXiv abs/1402.1869.
Neyshabur, B.; Bhojanapalli, S.; McAllester, D.; and Sre-
bro, N. 2017. Exploring generalization in deep learning.
In Advances in Neural Information Processing Systems 30,
5947–5956.
Novak, R.; Bahri, Y.; Abolafia, D. A.; Pennington, J.; and
Sohl-Dickstein, J. 2018. Sensitivity and generalization in
neural networks: an empirical study. In International Con-
ference on Learning Representations (ICLR).
Raghu, M.; Poole, B.; Kleinberg, J.; Ganguli, S.; and Sohl-
Dickstein, J. 2017. On the expressive power of deep neural
networks. In Precup, D., and Teh, Y. W., eds., Proceedings
of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research,
2847–2854.
Shwartz-Ziv, R., and Tishby, N. 2017. Opening the black
box of deep neural networks via information. arXiv preprint
arXiv:1703.00810.
Simard, P. Y.; Steinkraus, D.; and Platt, J. C. 2003. Best
practices for convolutional neural networks applied to visual
document analysis. In International Conference on Docu-
ment Analysis and Recognition (ICDAR), volume 02, 958.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747v2.
Zeiler, M. D., and Fergus, R. 2013. Visualizing and under-
standing convolutional networks. ArXiv abs/1311.2901.
Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; and Vinyals,
O. 2016. Understanding deep learning requires re-
thinking generalization. arXiv preprint (In ICLR 2017)
arXiv:1611.03530.


