

DNNs as layers of cooperating classifiers

Davel, Theunissen, Pretorius & Barnard

Marelie Davel

North-West University, South Africa Centre for Artificial Intelligence Research

Overview

- Generalization in DNNs
- Inside a fully-connected feedforward network
 - Regularities in node behavior
 - Mechanisms that cause them
 - 'Two collaborating systems'
- Implications

Generalization in DNNs

Understanding DNNs

- Expressivity
- Trainability
- Generalization

The 'apparent paradox' (Kawaguchi et al., 2019)

- Low-capacity class \Rightarrow generalization (Vapnik, 1998)
- DNNs extemely large capacity (Zhang et al., 2017; Dinh et al., 2017)

Generalization in DNNs

Many approaches:

- Complexity of the hypothesis space; regularised network capacity; small norms
- Geometry (smoothness) of the loss surface; flat minima
- Statistical measures: uniform stability, robustness
- Large classification margins

Framework for characterizing generalisation behavior in general circumstances remains elusive

Architecture: start simple

- Feedforward fully-connected
- Classification
- ReLU hidden activations

Node behavior: activation patterns

MNIST initialized

MNIST trained

Experimental setup

- MNIST, FMNIST
- Different architectures:
 - Depth: 1-10 layers by 100 nodes
 - Width: 10 layers by 20-200 nodes
- Standard setup:
 - SGD, Adam, early stopping, normalized uniform init, lr grid search, random training seeds
- No batchnorm, dropout, data augmentation

Node behavior: layer perplexity

- Discrete representations per layer
- Average perplexity per class

$$H(c,l) = -\sum_{n \in K(c,l)} \frac{n}{N_c} ln\left(\frac{n}{N_c}\right),$$

$$P(c,l) = e^{H(c,l)}$$

Node behavior: layer perplexity

• Weight update: recursive calculation

$$\Delta w_{i,j,k} = -\eta \frac{\partial E}{\partial w_{i,j,k}}$$

• Use

$$Relu(x) = xT(x)$$

where $T(x) = \begin{cases} 1 \text{ if } x > 0\\ 0 \text{ if } x \le 0 \end{cases}$

- Incorporate bias in first layer as extra weight
- Enumerate all components

$$\Delta W_{i,j,k} = \eta \ a_{i-1,k} \sum_{b=0}^{B_i-1} \prod_{g=i}^{N-1} T(z_{g,I(g,b)})$$
$$\prod_{r=i+1}^{N} W_{r,I(r,b),I(r-1,b)}$$
$$(y_{I(N,b)-h_{N,I(N,b)}})$$

ReLU + CrossEntropy + Softmax

1 if path

product of

weights on

this path

active, 0 if not

Two synergistic systems

- Forward process:
 - Group samples with regard to features; create 'sample sets'
 - Discrete process
- Adaptation process:
 - Optimise nodes locally
 - Attune node to features relevant to local sample set
 - Continuous process
- Nodes collaborate globally

Can we measure the effect of these systems?

Nodes as classifiers

- Estimate P(class|obs) at each node
 - Continuous: fit KDE
 - Discrete: count samples
 - Combined: continuous if node on, discrete if node off
- Combine over a layer

Two synergistic systems

6x100 trained network, MNIST

Trained networks, different depths (FMNIST)

6x100 network during training (FMNIST)

6x100 network during training (FMNIST), first epoch

What if not ReLU?

7x100 trained network, sigmoid activations, FMNIST

Why relevant?

- Viewpoint + analysis tools
 - Can probe generalization ability of a network
 - Shed light on role of sub-components in solving sub-tasks
- Investigate balance between opposing goals
 - Grouping / separating samples
 - General / specialist behavior
 - Local / global optimization

Label corruption

Theunissen, Davel & Barnard, 2019. "Insights regarding overfitting on noise in deep learning"

> Reproduced based on Zhang et al, 2017. "Understanding deep learning requires rethinking generalization"

Label corruption

Quarantine paths

In summary

- Individual nodes can be regarded as classifiers, making accurate predictions at individual layers
- SGD creates two interacting systems:
 - Discrete system that groups samples according to local relevancy
 - Continuous system that attunes each weight vector (flowing into a node) to the most relevant local features
- Generalization strength emerges from collaboration among distinct classifiers, each addressing a sub-population of the data
- Two-system analysis a conceptual tool for exploring further

Thank you!

