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Introduction
• Complex time series data often encountered in scientific and engineer-

ing domains.
• Deep learning (DL) is particularly successful here:

– large data sets, multivariate input and/or ouput,
– highly complex sequences of interactions.

• Model interpretability:
– Ability to understand a model’s decisions in a given context [1].
– Techniques typically not originally developed for time series data.
– Time series interpretations themselves become uninterpretable.

• Knowledge Discovery:
– DL has potential to reveal interesting patterns in large data sets.
– Potential to produce novel insights about the task itself [2, 3].

• ‘know-it’: Collaborative project that studies knowledge discovery in
time series data.

Goal
• Develop a platform that simplifies:

– the development of time series models,
– interpreting these models,
– interpreting the explanations.

• Probe the limitations of current interpretability techniques when ap-
plied to time series data, specifically.

• Apply to selected applications.

Platform

Figure 1: Main modules

• Both existing time series architectures (TCNs, RNNs, LSTMs,
temporal transformers) and ability to import own architecture.

• Feature attribution focus currently on SHAP variations [4].
• Not as forecasting-focused (autoregressive) as related projects.
• Summarisation and visualisation still limited.

Synthetic Testbench
• Create time series data with known relationships.
• Testbench generates the data set.
• User uses know-it or external system to construct accurate model and

extract explanations.
• Testbench evaluates explanations against known ground truth.

Synthetic Data
• Synthetic data should reflect real-world time series data.
• User configurable:

– generating function: specifies underlying feature distributions,
– underlying co-variances among input parameters,
– transfer function: transforms input to output,
– time dependencies between parameters.

Applications
• Environmental monitoring: Penguin prey capture events from bird-

borne data loggers.

Figure 2: Accelerometer data logged by chinstrap penguins. Video
confirmation used to train models in a supervised fashion.

• Microbial ecology: Modeling population dynamics of the wine yeast
community through time, where yeast-yeast interactions affect fer-
mentation outcomes.
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Figure 3: Microscopic images of distinctively labelled yeast species inter-
acting in a constrained growth medium.

• Space weather tracking: Geomagnetic index prediction from solar
wind data.
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Figure 4: Predicting the effect of a solar storm on Earth’s geomagnetic field.
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