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Abstract—We investigate the effect of a reduced modulation
scheme pool on a CNN-based automatic modulation classifier.
Similar classifiers in literature are typically used to classify sets
of five or more different modulation types [1] [2], whereas our
analysis is of a CNN classifier that classifies between two modu-
lation types, 16-QAM and 8-PSK, only. While implementing the
network, we observe that the network’s classification accuracy
improves for lower SNR instead of reducing as expected. This
analysis exposes characteristics of such classifiers that can be
used to improve CNN classifiers on larger sets of modulation
types. We show that presenting the SNR data as an extra data
point to the network can significantly increase classification
accuracy.

Index Terms—Automatic Modulation Classification, In-phase
and Quadrature-phase (I/Q) symbols, Deep learning

I. INTRODUCTION

In this paper we investigate a deep learning based ap-
proach to automatic modulation classification (AMC). AMC
is used in the telecommunications field to identify trans-
mission modulation schemes without this information being
explicitly communicated between transmitters and receivers.
AMC reduces overhead in communication and allows for
effective switching between modulation schemes in cognitive
radio applications. In the past, AMC has been implemented
with statistical [3] and machine learning methods, such as
clustering [4] and support vector machines [5]. In recent years
deep learning architectures such as multilayer perceptrons
(MLPs) and convolutional neural networks (CNNs) have been
applied to the problem and have shown better performance
over the more traditional approaches with regard to both
accuracy and speed [6].

This paper investigates classification behaviour of deep
neural networks on modulation types under additive white
Gaussian noise (AWGN), by classifying between two mod-
ulation schemes, both varying in type and order. By using
a reduced modulation pool for classification, we are able to
better understand how a CNN interacts with an AMC task.

II. RELATED WORK

There exist several methods to approach AMC using deep
learning models [7]. Most approaches supply some constella-
tion data obtained from raw signal data to a neural network.
How the constellation data is presented to the neural network

does, however, vary depending on the method. Popular meth-
ods include presenting the quadrature and in-phase data points
of constellation diagrams in a 2 × N array, where N is the
number of data points [2], or presenting the constellation plots
as images [8]. The last method often contains several stages
of feature extraction and pre-processing before the data is
presented to the network.

CNNs are typically used for AMC problems [7] and
function by presenting the input data to convolutional layers.
The convolutional layers extract features from the data by
making use of filters, also known as kernels. After feature
extraction, the convolutional layers are flattened and passed to
dense layers that make use of the previously extracted features
to perform classification [9], [10].

For our study we use a CNN structure, similar to the
network used by Yongshi et al. [2], that receives constellation
data points rather than images as inputs. The reason for this is
to simplify the investigation of the neural network, since pre-
processing and presentation of image data to CNNs add extra
levels of analysis to the process. We make use of 16th order
quadrature amplitude modulation (16-QAM) and 8th order
phase-shift keying (8-PSK) modulation schemes as input, as
both the order and method of modulation differ between the
two.

III. EXPERIMENTAL SETUP

A. Data

The data is presented as complex values of the signal
constellation in the I/Q plane generated using Matlab version
2020b. A random bit stream source is modulated in baseband
using one of two modulation types (8-PSK or 16-QAM).
The modulated data is sent over an additive white Gaussian
noise (AWGN) channel with varying normalised signal-to-
noise (SNR) ratios (Eb/No) with an average signal power of
1W over 1Ω. The complex valued channel symbols are then
grouped into samples containing 1024 constellation points of
each symbol’s in-phase and quadrature component. Thus, each
sample consists of 1024 32-bit real and 1024 32-bit imaginary
data points to create a 2× 1024 sized data set.

The SNR, Eb/No, is discretely stepped over the range of -15
dB to 5 dB in 1 dB increments to create training, validation
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and evaluation sets respectively. The number of generated data
samples per Eb/No is listed in Table I.

TABLE I
NUMBER OF DATA SAMPLES GENERATED PER EB /NO OF A MODULATION

SCHEME, AS WELL AS THE TOTAL SET SIZE OVER 21 SNR RANGE.

Modulation Train Validation Test
8-PSK 1 000 500 1 000

16-QAM 1 000 500 1 000
Total set size 42 000 21 000 42 000

The training and validation sets are used in the training
process as described below, while the evaluation sets are kept
separate to evaluate the performance per Eb/No level.

B. Baseline architecture

The classifier architecture is based on that of Yongshi et
al. [2], but with fewer nodes in the hidden dense layer. The
hidden dense layer is reduced to 100 nodes, as the number of
modulation types to classify has been reduced. This change is
made to improve the training time and throughput of the net-
work. The network consists of two convolutional layers that
are ReLu-activated [11], makes use of batch normalisation,
has no padding and a stride of 1. A max pooling layer, with
a stride of 2, is placed between the convolutional layers to
reduce the complexity of the network. After the convolutional
layers a linear layer with 100 nodes is placed, followed by
the classification layer (also a linear layer) with 2 outputs [2].

C. Training protocol

The same training protocol is followed for all networks.
Networks are trained with the Adam [12] optimiser using a
cross-entropy loss function. Adam is selected for its ability
to adapt the learning rate of different parameters, and cross-
entropy loss is used for its good performance in classification
problems [9], [10]. Since ReLU activation functions are used,
the weights of the network are initialised using a uniform
Kaiming initialisation [13].

The following hyperparameters are optimised: learning
rate, batch size, and weight decay (L2 penalty). We selected
these hyperparameters, as preliminary tests showed that they
have noticeable effects on the model’s performance. Hyper-
parameter tuning is performed using grid searches on the
predefined CNN architecture, by comparing the networks’
results on the validation data set. The grid search is performed
over different learning rates {0.01, 0.001, 0.0001}, batch sizes
{32, 512}, weight decay values {0, 0.001, 0.01} and 3 random
initialisation seeds. The initialisation seeds are used to ensure
a particularly strong or weak network initialisation does not
affect the results. We also make use of a grid search over
the architecture by varying the convolution kernel width {4,
16, 32, 64} and amount of dropout {0, 0.5} hyperparameters
[14].

To ensure the network trains until it convergences, the
network is trained for a minimum of 50 epochs, after which
the training is terminated when no improvements in validation
accuracy is found in the last 20% of epochs. Early stopping is

then implemented by selecting the epoch at which the model
achieved its highest classification accuracy on the validation
set.

IV. ANALYSIS AND RESULTS

A. Classification performance

The goal of this experiment is to analyse the behaviour
of a CNN classifier on two modulation schemes of different
types and orders that exposes fundamental characteristic when
using a data point driven constellation diagram input.

From the classification accuracy and average class recall
of the baseline architecture network in Figure 1, we can see
that the model classifies well for SNRs above 0 dB. At lower
SNRs the accuracy decreases as the signal falls below the
noise floor. We also see an increase in accuracy when the
number of kernels is increased to 36 kernels. Varying other
hyperparameters revealed that adding dropout and using a
weight decay value of 0.01 also increases accuracy and that
the model generalises better on the validation set. The final
hyperparameters for the baseline architecture can be found in
Table II.

TABLE II
HYPERPARAMETERS OPTIMISED FOR THE BASELINE ARCHITECTURE.

Parameter Value
Learning rate 0.0001

Batch size 32
Dropout 0.5

Weight decay 0.01
Kernel width 36

An interesting observation to make from Figure 1 is the
unexpected improvement of the declining 8-PSK classification
accuracy at very low SNR. The 16-QAM classification also
increases slightly, but not as much as 8-PSK. This observation
is strange, as we usually expect modulation classifiers to show
reduced classification ability as noise increases until a reliable
classification can no longer be made and the network shows
50% classification accuracy.

Fig. 1. Average classification accuracy (over 3 seeds) of the baseline
architecture using optimised hyperparameters, for the evaluation data set
with range of -15 dB to 5 dB. The average recall of 16-QAM and 8-PSK,
respectively, is also shown.
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B. Analysis of low SNR artefact

In order to find out why this increase in accuracy at lower
Eb/No exists, we investigate whether this effect is due to
the boundaries of the range of SNRs evaluated. Using the
same training hyperparameters, the network was retrained for
two ranges of the SNR, namely [-20;0] and [-10;10]. This
investigation is also used to establish if the improvement in
accuracy is tied to certain SNRs, or to a Eb/No position in the
range. In addition, we investigate the effect of architectural
changes to the neural network to ensure the artefact is not
caused by lack of representational ability. The neural network
will be adapted in the following ways:

• Increasing the dense layer node count from 100 to 1 000
• Changing the convolution layer kernels from 36 to 512
• Adding an extra convolution layer

To ensure well-defined results, each one of these changes is
applied independently from the other.

Fig. 2. Baseline network evaluation set performance when the network is
trained on -20 dB to 0 dB, -15 dB to 5 dB and -10 dB to 10 dB SNR ranges,
respectively.

When using the same baseline architecture as before but
changing the Eb/No range, Figure 2 shows a similar trend
to that observed before. Figure 2 indicates that the increase
in accuracy occurs at lower Eb/No values, irrespective of the
input data range. However, it is observed that the accuracy
increase does not appear at a specific Eb/No. It should be
noted that accuracy fluctuations only appear after the 0 dB
accuracy descent and results near and above the noise floor
increase gradually as expected.

Fig. 3. Evaluation set performances when the dense layer of the baseline
network is increased to 1 000 nodes (‘Dense layer’), the baseline network’s
convolutional layers are increased from 2 to 3 (‘CNN layers’) and the baseline
network’s convolution kernels are increased to 512 (‘CNN kernels’).

When increasing the size and complexity of the network,
Figure 3 shows a similar trend to that observed in the baseline
architecture, except for variations in the average validation
accuracy. Some of the methods change the shape and intensity
of the accuracy increase in the Eb/No range, but all still exhibit
the same artefact.

C. SNR-specific training

When observing Figure 1, we note that the increase in
accuracy at lower Eb/No resembles models trained with SNR
pairs selection [15]. With pairs selection, the network is only
trained using two Eb/No data sets, instead of the entire range.
In some instances this may cause an increase in accuracy
surrounding the selected Eb/No pairs, especially in the low
Eb/No range. To determine if this training method can give
insight into the occurrence of the increase at low SNRs,
we test how well the network can classify a single SNR’s
data by training baseline networks on only single SNR data
sets. We also test the generalisation of each network over the
entire SNR range to identify the classification abilities of our
network on low SNR data.

Fig. 4. The performance of five baseline networks, each trained on a specific
dB value of SNR data and evaluated on the evaluation set.

From the classification accuracy of five baseline networks,
in Figure 4, obtained from SNR-specific training, we see that
each Eb/No could be classified above 90% accuracy over the
-15dB to 5dB range, showing that the network can classify
between the two modulation types, even when large amounts
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of noise is added, if the task is restricted to a narrower noise
range. Furthermore, this shows that the network is indeed able
to classify accurately at lower Eb/No levels.

Fig. 5. Classification accuracy of a baseline network trained using only
-8 dB data and evaluated on the evaluation set. The recall of 16-QAM and
8-PSK, respectively, is also shown.

From the classification accuracy and class recall of a
baseline network trained on -8 dB data as shown in Figure
5, it is seen that networks trained on lower Eb/No data
tend to generalise poorly to neighbouring Eb/No values and
only show accuracy above 50% for one to two neighbouring
Eb/No ranges before falling into a bias classification of 50%.
Networks trained on Eb/Novalues above 0 dB Eb/No, however,
show good generalisation, especially to higher Eb/No ranges
than the Eb/No it is trained on. Accuracy of networks trained
on high SNR data do however decrease when approaching
and passing the noise floor at 0 dB Eb/No.

The knowledge that the network can accurately classify
at any SNR level in our entire range, but then does not
generalise well to other ranges, leads us to the observation
that different classification criteria are being utilised for each
SNR level, especially at lower SNRs. We can also see on
which Eb/No level the network classifies accurately, not only
by the increase in accuracy but also by the point where
the network bias switches from 16-QAM to 8-PSK. This is
also seen in our original network (Figure 1), where accuracy
increases due to 16-QAM and 8-PSK classifications crossing
over at lower Eb/No levels. These observations suggest the
hypothesis that the network is prioritising certain Eb/No levels,
or classification criteria, over others in the training process. By
prioritising certain lower Eb/No levels the network increases
the average validation accuracy.

D. Adding SNR as a feature

Knowing that the model can achieve an accuracy near
100% for any of the Eb/No levels within our range and
the hypothesis that the network is selecting specific Eb/No
ranges to optimise for, we turn to literature to find possible
clarification of this behaviour. Several deep learning AMC
networks [1] show increased accuracy when the Eb/No dB of
the given constellation diagram is provided to the network to
aid in classification. Providing the Eb/No level might allow

the network to better optimise for the entire range, as it will
not be blindly selecting an area in the Eb/No range to optimise
for.

We provide the oracle Eb/No dB value to the network to test
if this additional information aids the network in optimising
better in the lower Eb/No range. The Eb/No value is provided
to the linear layer of the network after the initial feature
extraction has taken place in the convolutional layers, and
prior to classification based on the extracted feature maps.
By providing the Eb/No values, we test if the network will
be able to adapt the classification criteria based on the Eb/No
level.

From the classification accuracy of the network provided
with SNR data in Figure 6, we observe a substantial increase
in the validation accuracy across the entire Eb/No range. By
providing the network with oracle Eb/No values, the network
is able to adjust its classification criteria based on the amount
of noise on the constellation data points.

Fig. 6. Classification accuracy on the evaluation set, comparing the baseline
network and a network where the SNR of the modulation scheme is presented
to the network as a feature.

E. Effect of SNR estimation accuracy

By providing the oracle Eb/No data, we create a much-
improved classifier for our binary classification problem. We
do, however, know that the performance greatly relies on
the provision of Eb/No values using SNR estimation at the
receiver. This affects the implementation of this network in
practical applications as noise level estimation accuracy tends
to decrease at lower Eb/No levels [2]. To further understand
the robustness and generalisation of the SNR-tagged network,
we performed a sensitivity analysis.

The sensitivity analysis is conducted by generating statis-
tical noise within a given range, as if an error was made
when estimating the Eb/No value of the received signal, and
adding that to the provided Eb/No data point when making a
classification. The evaluation set and best performing baseline
network is used for this analysis.

The results of the sensitivity analysis results for the baseline
architecture is shown in Figure 7. We observe that variations
within a 0.5 dB Eb/No range do not affect classification
accuracy substantially, since all Eb/No still achieve above 95%
accuracy. It is only after variation over 1 dB is introduced that
the network’s classification accuracy is noticeably reduced,
especially at lower Eb/No levels.
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Fig. 7. A sensitivity analysis of SNR-tagged networks where the SNR input
is corrupted with increased levels of stochastic variance. This mimics the
effect of inaccurate SNR estimators.

This reduction in accuracy can be attributed to the network
being trained with Eb/No step sizes of 1 dB, since as the
provided SNR value moves closer to a neighbouring value,
the generalisation of the classification criteria is reduced. The
generalisation effect can also be observed at higher Eb/No
levels as high accuracy levels are still achieved, even at
high Eb/No variation. This observation once again highlights
the specificity of the classification criteria needed to classify
accurately at low Eb/No levels as opposed to above the noise
floor.

V. CONCLUSION

This paper uncovers and investigates an artefact that occurs
when implementing a modulation classifier for two modu-
lation schemes, which provides constellation diagram data
points as input to a CNN. It is found that the network
can classify accurately at low SNR levels when only trained
using specific Eb/No’s data and that it generalises poorly to
neighbouring Eb/No values. Knowing that the problem does
not lie with the representational capacity of the network but
rather with how the network models the task, the SNR values
are provided as an additional input feature. This technique
significantly increases accuracy at low Eb/No values as the
network now has reference to the classification criteria to
select when making a prediction. A sensitivity analysis of
the effect when the additional input features are corrupted
shows the weak generalisation of the classification criteria by
highlighting the drop in performance when SNR estimation
accuracy is low. This means that this network will only be of
use if a SNR estimator that can accurately predict Eb/No at
low SNR is used. Moving forward, this network and method

could be further researched to improve AMC for low SNR
environments.
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