Multi-style training for South African call centre audio

W. Heymans, M.H. Davel and C. van Heerden

8 December 2021

Overview

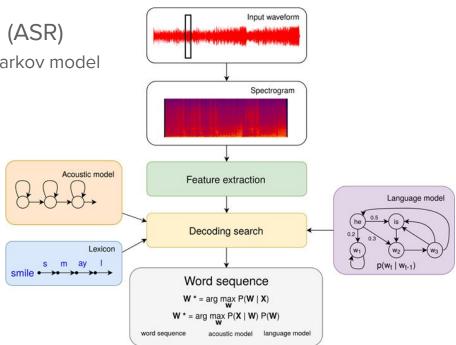
- Introduction to automatic speech recognition (ASR)
- Background
- Datasets
- Experimental setup
- Experiments in a controlled environment
 - Measure isolated effects
 - Speed, volume, noise, sampling rate, encoding
- Experiments on a real-world dataset (South African call centres)
- Conclusion

Introduction

- Automatic speech recognition (ASR) is a technology that enables computer systems to convert spoken language into text using an automated process.
- Actively researched since the 1970s.
- Word error rate (WER) has been significantly improved.
 - Advancements in deep learning
 - Increased computational power of modern computers
 - Large amounts of data
- Important applications
 - Human-to-machine communication
 - Voice search
 - Digital assistants
 - Call centre speech analytics

Introduction

- Automatic speech recognition (ASR)
 - Deep neural network hidden Markov model
- Input waveform
- Fourier transform
- Feature extraction
- Acoustic model
- Lexicon
- Language model
- Decoding



Background

- Mismatched training and testing data
 - Background noise
 - Microphone distortion
 - Different recording environments
 - Encoding noise
 - Sampling rate mismatch
 - Speaking styles and accents

Background

- Difficult to generalise to new audio if the mismatch is not handled
- Multi-style training
 - Transform training data to better represent test conditions
 - Learn robust representations of the data
 - Add a series of styles:
 - Speed
 - Volume
 - Noise
 - Sampling rate

Datasets: South African Call Centre corpus

- Proprietary call centre corpus
- Contains mostly South African English
- Single channel recordings
- Encoded with WAV49 encoding

Table 1	. SACC	corpus subsets	with	sampling rate,	encoding	and	total duration.
---------	--------	----------------	------	----------------	----------	-----	-----------------

Dataset	Sampling rate	Encoding	Hours
train	$8 \mathrm{~kHz}$	-	48.8
train-e	$8 \mathrm{~kHz}$	WAV49	48.8
dev	8 kHz	-	7.1
dev-e	$8 \mathrm{~kHz}$	WAV49	7.1
test	8 kHz	-	6.2
test-e	$8 \mathrm{~kHz}$	WAV49	6.2
held-out test	$8 \mathrm{~kHz}$	WAV49	1.2

Datasets: LibriSpeech corpus

- Creating a controlled environment
- 1,000 Hours of English audiobook recordings
- We use the 100 hour subset (train-clean-100)
- Public availability benchmark for many ASR systems
- 16 kHz sampling rate
- Simulate call centre conditions
 - Adding noise using QUT-Noise corpus (for dev and test sets)
 - Reduce sampling rate to 8 kHz and encode with WAV49
 - Create training datasets using Musan Noise corpus (artificial mismatch)

Datasets: LibriSpeech corpus

Table 2. Multi-style training datasets created using the 100 hour clean LibriSpeech subset (*train-clean-100*).

Dataset name	Encoding	Noise corpus	\mathbf{SNR}	Speed	Volume
train-clean	-	-	-	-	-
train-clean-8k	-	-	-	-	-
train-clean-e	WAV49	-	-	-	-
train-noisy-e-5	WAV49	QUT	5	-	-
train-clean-e-s	WAV49	-	-	10%	-
train-clean-e-v	WAV49	-	-	-	20%
train-clean-e-sv	WAV49	-	-	10%	20%
train-musan-e-5	WAV49	Musan	5	-	-
train-musan-e-10	WAV49	Musan	10	-	-
train-musan-e-15	WAV49	Musan	15	-	-
train-musan-e-20	WAV49	Musan	20	-	-
train-musan-e-15-s	WAV49	Musan	15	10%	-
train-musan-e-15-v	WAV49	Musan	15	-	20%
train-musan-e-15-sv	WAV49	Musan	15	10%	20%

Datasets: LibriSpeech corpus

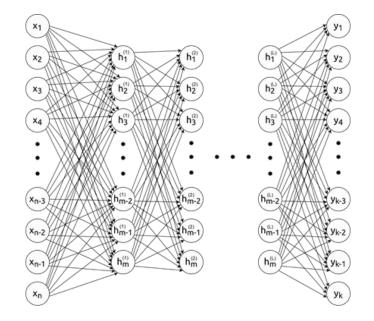
- Development sets
- Test set

Table 3. Development and test datasets created using the LibriSpeech *dev-clean* and *test-clean* sets.

Dataset name	Source dataset	Encoding	Noise corpus	\mathbf{SNR}	Hours
dev-clean-e	dev-clean	WAV49	_	-	5.4
dev-noisy-e-5	dev-clean	WAV49	QUT	5	5.4
test-noisy-e-5	test-clean	WAV49	QUT	5	5.4

Experimental Setup

- Pytorch-Kaldi ASR toolkit
- CD-DNN-HMM ASR system
- Default setup of Pytorch-Kaldi toolkit
- Acoustic model
 - 5 Hidden-layer network (1 024 units)
 - ReLU activation functions
 - Batch normalisation
 - Dropout
- fMLLR input features
- Train all networks until convergence
- Grid search to optimise hyperparameters



- LibriSpeech corpus
- Different sampling rates
- Evaluate matrix of networks (encoding and different sampling rates)

Table 4. WER results of models with different sampling rates on *dev-clean* and *dev-clean-e*. Average WER (%) and standard error is shown over 3 seeds.

Train set	Sampling rate	dev-clean	dev-clean-e
Wide-band			
train-clean	$16 \mathrm{~kHz}$	$\textbf{8.88} \pm \textbf{0.10}$	19.32 ± 0.11
train-clean-e	$16 \mathrm{kHz}^6$	10.71 ± 0.05	$\textbf{11.02}\pm\textbf{0.03}$
Narrow-band			
train-clean	$8 \mathrm{kHz}$	10.29 ± 0.03	11.44 ± 0.04
train-clean-e	8 kHz	10.76 ± 0.02	11.21 ± 0.03

- Reduced sampling rate
- Encoding only
- Speed perturbation
- Noise perturbation
- Combination
- Matched training dataset

Table 5. WER on development set (dev-noisy-e-5) using training datasets with different styles. Average WER (%) and standard error is shown over 3 seeds.

Model	Datasets	Size	Dev WER
Variations of clean set			
train-clean	train-clean	1	36.46 ± 0.14
$train-clean-8k^7$	train-clean @ 8 kHz	1	33.23 ± 0.21
train-clean-e	train-clean-e	1	$\textbf{28.06} \pm \textbf{0.03}$
Speed and volume			
train-clean-e-s	train-clean-e + s	2	$\textbf{27.83} \pm \textbf{0.02}$
train-clean-e-v	train-clean-e + v	2	28.21 ± 0.07
train-clean-e-sv	train-clean-e + sv	2	28.25 ± 0.10
train-clean-e-s-v	train-clean-e + s + v	3	28.04 ± 0.13
Noise			
train-musan-e-5	train-musan-e-5	1	29.29 ± 0.34
train-musan-e-10	train-musan-e-10	1	27.29 ± 0.12
train-musan-e-15	train-musan-e-15	1	$\textbf{23.30}\pm\textbf{0.06}$
train-musan-e-20	train-musan-e-20	1	26.64 ± 0.09
Speed, volume and nois	e		
train-musan-e-15-s	train-musan-e-15 + s	2	24.09 ± 0.05
train-musan-e-15-v	train-musan-e- $15 + v$	2	23.97 ± 0.11
train-musan-e-15-sv	train-musan-e-15 + sv	2	24.34 ± 0.02
train-musan-e-15-s-v	train-musan-e-15 + s + v	3	$\textbf{23.80} \pm \textbf{0.09}$
train-musan-e-15-s-v-sv	train-musan-e- $15 + s + v + sv$	4	23.89 ± 0.08
Matched noise			
train-noisy-e-5	train-noisy-e-5	1	19.75 ± 0.04

• Test set

Table 6. WER on test set (*test-noisy-e-5*) using training datasets with different styles. Average WER (%) and standard error is shown over 3 seeds.

Model	Datasets	Size	Test WER	
Variations of clean set				
train-clean	train-clean	1	36.92 ± 0.18	
train-clean-e	train-clean-e	1	29.16 ± 0.12	
Speed and volume				
train-clean-e-s	train-clean-e + s	3	28.61 ± 0.11	
Noise				
train-musan-e-15	train-musan-e-15	1	24.54 ± 0.22	
Speed, volume and noise				
train-musan-e-15-s-v	train-musan-e- $15 + s + v$	3	24.87 ± 0.08	
Matched noise				
train-noisy-e-5	train-noisy-e-5	1	$\textbf{20.48} \pm \textbf{0.03}$	

• Increased network size

Table 7. WER on development (dev-noisy-e-5) and test set (test-noise-e-5) using MLP acoustic models with 2 048 hidden units per layer. Average WER (%) and standard error is shown over 3 seeds.

Model	Size	Dev WER	Test WER
Encoded			
train-clean-e $(1 \ 024x5)$	1	28.06 ± 0.03	29.16 ± 0.12
train-clean-e $(2 \ 048 \text{x5})$	1	26.82 ± 0.08	27.74 ± 0.14
Noise			
train-musan-e-15 $(1 \ 024x5)$	1	23.30 ± 0.06	24.54 ± 0.22
train-musan-e-15 $(2\ 048x5)$	1	23.15 ± 0.10	24.55 ± 0.04
Speed, volume and noise			
train-musan-e-15-s-v $(1 \ 024x5)$	3	23.80 ± 0.09	24.87 ± 0.08
train-musan-e-15-s-v $(2 \ 048 \text{x5})$	3	$\textbf{22.81} \pm \textbf{0.06}$	24.34 ± 0.08

Experiments: Real-world dataset

- Call centre data
- Baseline trained using unencoded data
- Encoded model
- MTR model (unencoded, encoded and speed perturbed)

Table 8. WER results on dev/test sets for the SACC corpus. Average WER (%) is shown over 3 seeds.

Model	\mathbf{dev}	dev-e	test	test-e	held-out test
train	28.41	28.91	33.14	33.43	41.90
train-e	28.40	28.63	33.36	33.04	41.80
MTR	27.98	28.19	32.77	32.46	$\boldsymbol{41.42}$

Conclusion

- MTR is very useful if the styles are chosen appropriately.
 - Speed and volume may improve performance, given enough capacity.
 - Noise and encoding was the most effective.
- Matched training data is still much better than MTR.
- With proper network capacity MTR does not hurt performance.
- Small consistent improvements are observed in matched datasets.
- Very large improvements achieved on mismatched datasets.

Questions?