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Abstract—Text generation is one of the important sub-tasks
of natural language generation (NLG), and aims to produce
humanly readable text given some input text. Deep learning
approaches based on neural networks have been proposed to
solve text generation tasks. Although these models can generate
text, they do not necessarily capture long-term dependencies
accurately, making it difficult to coherently generate longer
sentences. Transformer-based models have shown significant
improvement in text generation. However, these models are
computationally expensive and data hungry. In this study, we
develop a Sepedi text generation model using a Transformer-
based approach and explore its performance. The developed
model has one Transformer block with causal masking on the
attention layers and two separate embedding layers. To train
the model, we use the National Centre for Human Language
Technology (NCHLT) Sepedi text corpus. Our experimental
setup varied the model embedding size, batch size and the
sequence length. The final model was able to reconstruct unseen
test data with 75% accuracy: the highest accuracy achieved to
date, using a Sepedi corpus.

Index Terms—Transformers, Generative pre-trained Trans-
former, Natural Language Generation, Text generation

I. INTRODUCTION

Sepedi is one of the official languages of South Africa and
the first language of 9.1% of the South African population [1].
It is largely spoken in the Limpopo province and some
parts of the North Eastern region of South Africa. Sepedi
is classified as an under-resourced language and currently
there is no Transformer-based text generation model for
Sepedi. Text generation models have been developed for well-
resourced languages like English using the Transformer-based
approach [2], [3].

Natural language generation (NLG) is a domain of artificial
intelligence that is aimed at producing understandable natural
language text [4]. The goal of NLG is to construct software
systems that can coherently generate readable text in different
applications, such as question and answering systems (in-
cluding chatbots), automating the generation of storytelling,
document summarisation, translating text, and improving the
efficiency of paper writing in research and other professional
writing [5]. Text generation, as a sub-task of NLG, is the
process of automatically generating text given some input text.
It is accomplished through the training of a language model
on a large corpus using machine learning techniques to find

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2022

the probability of the next word in a sequence of words [6].
That is, given

P(Y‘X) = P(yla"'vij"yn|X)

the text generation model generates y; as a sequence of
discrete tokens generated from the vocabulary conditioned on
the input X.

Until recently, recurrent neural networks (RNNs) [7] and
long short-term memory (LSTM) [8] networks have been
the dominant approaches in NLG tasks. These models have
been used to successfully implement text generation mod-
els. However, a significant drawback of RNNs is that they
struggle to accurately capture long-term dependencies i.e, the
probability of remembering words and maintaining context as
the sentence gets longer diminishes due to either vanishing or
exploding gradients [9], [10]. LSTM on the other hand, has the
capability of learning and remembering words more than one
thousand timestamps backwards hence it was deemed a solu-
tion to the problem of vanishing or exploding gradients [10].

Recently, the Transformer [11] has emerged as the de
facto architecture for natural language processing tasks [12].
Models based on the Transformer architecture have shown
significant improvement in NLG tasks like text generation
and text translation [13]. Hence, in this study, we develop
a Sepedi text generation model using the Transformer-based
approach and explore the model’s performance on a Sepedi
text corpus.

The paper is structured as follows: Section II discuss
background to the study. Section III discusses the dataset
used for training the text generation model. In Section IV
we discuss the experiments conducted, while in Section V
we focus on the results obtained and the evaluation thereof.
Concluding remarks are made in Section VI.

II. BACKGROUND

Machine learning focuses on the development of algorithms
that are able to learn, adapt and improve automatically through
training [10]. That is, the more the algorithm is trained, the
better it becomes. Previous algorithms for modelling natural
language generation tasks were mainly based on RNNs.
These algorithms were good at modelling sequential data
[14]. Unlike the recurrence technology used in RNNs, which
requires data or sequences to be processed in sequence, the
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Transformer-based architecture uses self attention and a multi-
head mechanism to circumvent the recurrence approach and to
capture long-term dependencies. This mechanism allows the
Transformer to be able to attend to information from different
representations. The process is achieved by calculating the
output score as a weighted sum of the values for each input
sequence by multiplying the key (K), query (Q), and value (V)
vectors for each embedding word using the attention function
[11].

QK"
Vi

where dj, is the input dimension vectors of the keys.

Attention(Q, K, V) = softmax(

%

To ensure that the model attends to information from
different representations, the Transformer model uses multi-
head attention mechanism where the key, query, and value
vectors are projected linearly and the attention function is
applied in parallel to obtain the value dimensions which are
then concatenated to obtain the final value output. Multi-
head attention is regarded as the main component of the
Transformer architecture which calculates the contextual rep-
resentations of each word by considering the entire input
sequence at different sub-spaces [15]. It is defined as

Multi(Q,K,V) = concat(Head,, Heady,..Head,)W©

where Head; = Attention(QWS, KWX VW)

with QWZ-Q,K WZK , VWZ-V as the learned projection matri-
ces and W% € RI¥? as the projection matrix for the
output. Transformer-based models like generative pre-trained
Transformer-3 (GPT-3) [16] and its earlier versions use this
technique. The Transformer is basically meant to transform
one sequence to another sequence using either the encoder or
decoder part the architecture [3].

GPT is an autoregressive language model which uses the
decoder part of the Transformer architecture by stacking mul-
tiple Transformer decoder layers with masked self attention
heads. This language model has been trained to predict the
next word z; given the previous words z1,xs...,z;—1 [17].
Its training objective is to maximise the log-likelihood

Z log(P(z;|x1, o, ...,x-1)); 0T)

where 6T are the model parameters. Fig. 1 shows the decoder
part of the Transformer with just a single layer of Transformer
block. GPT-2 small has 12 Transformer layers.

Pawade et al. [18] developed a story scrambler using a
RNN-LSTM approach to generate plausible text. In their
approach, several parameters like model size, number of
layers, batch size and sequence length were varied during
training in order to optimise the training loss. Their optimal
value for the training loss was 0.01, obtained with a model
size of 512, number of layers equal to 3, a batch size
of 100 and a sequence length of 50. The evaluation of
the performance of their model included human evaluation.
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Factors like grammar correctness, linkages of events, level of
interest and uniqueness in the generated stories were rated by
human evaluators and stories with an average score of 60%
and higher in all aspects were accepted. Their model recorded
an accuarcy of 63%. Moila and Modipa [19] also used a RNN-
LSTM to develop a Sepedi text generation model. Their model
produced an accuracy of 50.3% with limited data.
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Fig. 1:
Decoder-only architecture used by GPT-2. Source: [20]

Du et al. [3] developed an automatic text generation model
using deep learning approaches for providing large scale
support for online learning communities. In their approach,
RNN and GPT-2 language models were trained with over two
million comments from online communities. To assess the
performance of their model, the generated text was measured
through readability test and human evaluation. Their study
found that GPT-2 could generate more human-like written
text than an RNN. In another study, Keh and Cheng [2]
used Bidirectional Encoder Representations from Transform-
ers (BERT), a pre-trained language model, to developed a
model for personality classification and specific language
generation. Their model recorded the lowest loss of 0.02 with
an accuracy of 47% with just 10 epochs. Their experimental
setup used a batch size of 16, learning rate of 3.1075, max
sequence length of 128, and a warm-up proportion of 0.1.

Transformer-based models have performed better on well-
resourced languages like English, however, it still remains to
be seen how they will perform on low-resourced languages,
hence the choice of the Transformer approach in this study.
Unlike [3] and [2] who used pre-trained Transformer models
(GPT and BERT) in their studies on English corpus, this study
trains the Transformer model from scratch using a Sepedi
corpus.
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IIT. DATA COLLECTION

The data for this study was obtained from the National
Centre for Human Language Technology (NCHLT) project.
The dataset is composed of a collection of several South
African government entities crawled from gov.za websites and
collected from various language units from 2007 to 2011 [21].
The Sepedi text corpus has 69 254 rows of text with about 2.1
million tokens. Table I shows the size of the selected dataset
with a split of 80% for training, 20% validation.

TABLE I: The number of sentences, words and unique tokens
in the dataset.

Dataset Training | Validation | Total data
Sentences 55 404 13 850 69 254
All words 1.5m 550k 2.1 mil

Unique tokens 50k 10k 50K

Fig. 2 shows a bar graph of the top 30 word frequencies
in the train dataset. The y-axis depicts the frequency of each
word in the dataset while the x-axis shows the words in the
vocabulary sorted from most to least frequent. It is observed
that bi-gram words have a high frequency in the Sepedi
language.

mmm Count
80000 -
9
2 60000 1
v
3
o
19
w
© 40000
(=}
=
20000
0 L ey
OE(D(Ul’U(‘UmeQ-EﬂJﬂJfoﬁﬂJﬂJfUﬂJEQJOfUﬂJE(‘U_rUOO(DO
D™ X > o ¥m3m55>~lﬂﬂ csg_g*-u.o_agw C)%
()] > =
Words
Fig. 2:

Word frequency in the train dataset

In Table II we notice that the word go has a high frequency
of occurring before the word ya and the word le has high
frequency of occurring before the word go. Importantly we
note that only 5% of the words in Table II are uni-grams,
42.5% are bi-grams and 52.5% are tri-grams and higher. This
shows that most bi-grams are largely followed by words with
higher n-grams in the Sepedi language.
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TABLE II: For each of the top 2 words, the 20 most frequent
words that occur after them.

Word Occurrence Word Occurrence

2o ya 3463 le 2o 7 726
ba 2 703 gore 1635
tSwa 2 030 ge 1573
se 1 684 ka 1572
na 1582 le 1 191
dira 1 390 gona 1 003
swana 1271 ye 856
feta 1212 tSa 645
ka 1019 ya 599
tloga 880 lengwe 524
le 823 a 493
hwetSa 772 ba 481
Soma 754 bjalo 434
tla 655 yena 421
fihla 654 batho 362
tSweletsa 623 se 352
fa 587 yo 347

be 586 tSe 345
netefatSa 551 bona 342
e 518 yona 331

IV. EXPERIMENTAL SETUP

Our experimental setup followed the approach of Pawade et
al. [18] and Keh and Cheng [2]. To develop the model itself,
we adopted the approach by Nandan [22] for developing a
GPT model using a deep generative approach in Keras'. The
developed GPT model has one Transformer block with causal
masking on the attention layers, two separate embedding
layers for tokens and a token index with one dense layer with
2 heads. The vocabulary size was set to 50K, the maximum
size of unique tokens in the dataset. The model embedding
size was varied at 32 and 64 to investigate the effect of these
complexity hyperparameters on the developed model. Eight
experiments were conducted, four for each model size varied
by batch size and sequence length (see Table III). We used
Adamax as the model optimiser and the rectified linear unit
(ReLU) activation function. The accuracy of the model was
measured by computing the total number of correct predic-
tions as a percentage of the total number of predictions during
training using the SparseCategoricalAccuracy function metric
which is used mostly when making text prediction for sparse
target (a condition where the yTrue is a huge metric that is
almost all zeros) in deep learning. SparseCategoricalAccuracy
metric checks if the maximum true value is equal to the index
of the maximum predicted value. The model learning rate was
kept constant at 10~3 throughout the experiments.

TABLE III: Loss and accuracy observed for different experi-
mental setups.

Exp | Model | Batch Max Loss | Accuracy
setup size size length
1 32 128 80 1.728 0.657
100 1.659 0.678
256 80 1.758 0.656
100 1.516 0.747
2 64 128 80 1.101 0.735
100 1.055 0.748
256 80 1.322 0.708
100 1.019 0.755
Uhttps://keras.io/
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The train loss and accuracy were recorded at every epoch.
The following parameters were varied at different levels of
training: embedding size, batch size and maximum sequence
length. The embedding size defines the complexity of the
model, the batch size controls the number of samples the
model should work through before the internal parameters
are updated, and the sequence length controls the length of
the tokens generated before padding. The model was run for
200 epochs. For regularisation, we first used the Transformer
default dropout of 0.1. The dropout was gradually increased
to 0.4 while monitoring the model’s performance. The model
generalised better with a dropout of 0.4. The activation
function and the optimiser were kept the same throughout
the experiments.

V. RESULTS AND EVALUATION

Fig. 3 shows the loss curve (loss value at each epoch of the
training process) for experiment setup one with model size of
32, while Fig. 4 shows the loss curve for experiment setup two
with model size of 64. In both cases, the single best model
is selected. Both the training and validation loss curves seem
to converge in Fig. 3, however, this is not the case in Fig. 4
where the validation error at 200 epochs is higher than the
training error, giving a possible indication of overfitting. The
optimal number of iterations in Fig. 4 was between 100 to
125 epochs.
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Fig. 3: Loss curve: model embedding size 32.
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Fig. 4: Loss curve: model embedding size 64.

The developed Transformer model achieved an accuracy
of 75%, which is a significant improvement over the RNN-
LSTM accuracy of 50.3% achieved in [19] on a similar task.
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Fig. 5: Accuracy curve: model embedding size 32.
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Fig. 6: Accuracy curve: model embedding size 64.

(The 63% achieved in [18] and 47% achieved with a pre-
trained Transformer model in [2] are not directly comparable.)
The optimal accuracy in our model was achieved with model
embedding size 64: the change in accuracy during training
for this model is shown in Fig. 6. Although the graph in
Fig. 3 for model size 32 converges at 200 epochs, the accuracy
(Fig. 5) still seems to be improving, although very slowly. An
increased number of epochs could have helped to improve the
accuracy, however from Fig. 5, it can be observed that the
improvement is expected to be small.

Considering the amount of data we had in the dataset, the
performance of the model was satisfactory. However, in both
experiments, we observe that the validation accuracy is higher
than training accuracy. This can occur for more than one
reason: either the validation set is in some way easier to model
than the training data, or the model is underfitting. The latter
is a possibility, since the system has only one dense layer
with two heads. We expect that, with the addition of more
dense layers and an increase in number of heads, the model
performance can improve.

In order to demonstrate performance of the model in
practice, we show a random text sample generated by the
model. We supplied the model with a seed of 10 words and
the model generated the text in Table IV. The first row is
the original text generated. We then corrected the grammar
in the second row and manually translated the text in the
third row. Given the amount of data we had and limited
computational resources, the generated text was viewed as
a preliminary success. The results shows that even though
the word frequency in Fig. 2 shows that bi-grams occur the
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TABLE IV: Generated text, corrected version and the English
version

molaotheo wa naga o swanetse go fetolwa gore badudi ba naga ya
mohlagase wo o bego e tlago ka kgwedi ya ikonomi yeo e swanago
le seripa ya setShaba , le go phethagatSa leano la selegae , leo go
hwetSa temokrasi di hlokegago go kaonafatSa karolo ya ka gare ga
mengwaga ye , go tloga ka se , le seripa . mabapi le go aga lefase ya
meSomo ye go batho ba tla phethagatSa ka ngwaga wa go akaretSwa
go hlola lenaneo la mebuSo ya lefase . mabapi le go re tla ba go
kaonafatSa mokgwa wa go ba go ba tSea swana

molaotheo wa naga o swanetSe go fetolwa gore badudi ba naga
ya mohlagase wo o bego o etla ka kgwedi ya ikonomi yeo e nago le
seripa sa setShaba , le go phethagatSa leano la selegae , le go hwetsa
temokrasi. se se hlokegago ke go kaonafatSa karolo ya ka gare ga
mengwaga ye , go tloga ka se , le seripa se mabapi le go aga lefase
le mesSomo ye batho ba tla phethagatSago ka ngwaga go akaretSwa go
hlola lenaneo la mebuSo ya lefase mabapi le go kaonafatSa mokgwa
wa go tSea swana

The constitution of the country should change so that citizens of the
country that electricity which used to come in the economic month
which has part within the community, should complete the local plan
and to get democracy. what is is missing is to make better the parts
within this years from this and this part in relation with building the
world and employments which people should work in a year including
implementation of the world governance and complete the behaviour
of being the same.

most because of the disjunctive nature of Sepedi language,
they are mostly followed by words with higher n-grams
(Table II) which are then used to generate sentences that are
approximately grammatically correct.

VI. CONCLUSION

The intent of this research was to explore the performance
of a Transformer-based model on the disjunctive under-
resourced language, Sepedi. Our aim was to develop and train
the model rather than to use a pre-trained model. The devel-
oped model was trained by varying the embedding size, batch
size and sequence length in order to observe the effect that
model complexity has on performance. The model achieved
an accuracy of 75% without human evaluation, which is the
highest accuracy reported for Sepedi to date. The inclusion
of human evaluators could have given us a better analysis of
model performance: this remains future work.

From our experimental results, it was observed that the
model size had an impact on the accuracy of the model.
When the model size was lower the accuracy was lower. The
dataset consisted of about 2.1M tokens and we could only run
up to 200 epochs per training run. Increasing the model size
and number of epochs with the same dataset is not expected
to improve the quality of the generated text significantly but
would result in the model being more complex for the data
that we had. For future work, we aim to experiment with more
data, larger models and longer training runs and to compare
the performance of these models with models developed for
other under-resourced languages.
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