Classifying recognised speech
with deep neural networks
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We show that text obtained from ASR provides an interesting and important
use case for NLP techniques.

We demonstrate the relative capabilities of various NLP solutions, including
embeddings and more traditional methods on such a task in the multilingual
South African context.



e Investigated textual representations: TFIDF, Word2Vec, fastText and
Doc2Vec.

e We use both linear and non-linear classification methods that explore the use
of logistic regression and a DNN classifier.

e Wealso explored alternative methods of classification, using only word
embedding and a CatBoost classifier trained on both the meta data and output

of DNN trained on the textual features.



Previously, methods included:

e TFIDF (Term frequency-inverse document frequency): a numerical static used to
express the importance of a word as a whole when considering the entire corpus.

The problem with this type of modeling?

e These models fail to capture regularities such as the linguistic structure within
languages.

e Last few years have shown promising performance relating to success of deep
learning methods and word embeddings.



What is a word embedding?
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Word embeddings are trained based on the distributional hypothesis: “words that
appear in the same context share semantic meaning with each other” - basic
premise of

works the same, additionally enrinching embeddings with the words
orthographic N-gram (i.e. “dizzy” = <di, diz, izz, zzy, zy>).

works in a similar fashion to training word vectors. Instead of training
vectors for individual words it trains a fixed-length paragraph representation for
the document as a whole by trying to predict words.



Methodology
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Data analysis and exploration
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Data analysis and exploration
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Corpus information
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Doc2Vec, Word2Vec, fastText and TFIDF are investigated using a logistic
regression (linear classifier) and a one-layer feedforward neural network
classifier (non-linear classifier), with varying capacity.

Metadata associated with text is also used to train a CatBoost classifier.

Features used include: broadcast-station name, keyword of interest, language
and time of day. - Output of DNN is also used as additional input feature.

Class weighted loss used to mitigate the effect of having an unbalanced data set.



Classifiers, optimisation and metrics
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Cohen Kappa statistic is used to evaluate and compare the various classifiers - measures
the inter-rater agreement between categorical items.

The CatBoost classifier SHAP values are used to evaluate feature importance.

This is calculated by comparing what the model predicts with and without a specific
categorical feature, and this is then used to determine which features are relevant and
which are not.



Both CatBoost and DNN use early stopping based on the Area Under the Curve
(AUC) value to counter over-fitting.

The DNN uses the Adaptive Moment Estimation (Adam) .
Batch size: 1024

Learning rate: 0.001



Cohen Kappa

<0.00 Less than chance agreement
0.01-0.20 Slight agreement
0.21-0.40 Fair agreement

0.41-0.60 Moderate agreement

0.61-0.80 Substantial agreement
0.81-0.99 Almost perfect agreement




Results
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Feature Importance Plot
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(b) SHAP values for Catboost classifier with
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(c) SHAP values for Catboost classifier with
added output prediction from 400 node feedfor-
ward neural network using Word2Vec.




e Applying TFIDF as the textual representation with a neural network,
outperformed all other embedding based methods.

e Considering the output of the DNN using TFIDF and CatBoost classifier as
an additional feature to the CatBoost, caused classifier to over-fit on this
feature.

e Word2Vec sslightly enhanced the model’s performance compared to the
baseline CatBoost classifier relying on the metadata associated with the
speech-text data.



Questions ?



