

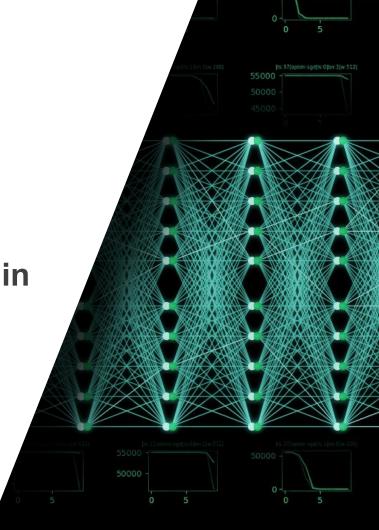
# Stride and translation invariance in CNNs

Presenter: Coenraad Mouton

Co-authors: Christiaan Myburgh and

Prof. Marelie H Davel

Multilingual Speech Technologies, North-West University Centre for Artificial Intelligence Research (CAIR)



#### Overview

- Provide a theoretical overview of translation invariance and what contributes to it in CNNs
- Purpose a novel perspective surrounding stride and filtering
- Empirically test this theoretical perspective



#### Translation Invariance

- If a model's output is unaffected by shifts of the input
- Commonly incorrectly assumed that CNNs are invariant to translation



- While the convolution operation is not invariant, it can be equivariant.
- Equivariance A shift of the input results in an equal shift of the output



- Both pooling and convolution is translational in nature
- Intuitively equivariance should hold
- Consider an arbitrary input I and kernel K

$$I = [0,0,0,0,1,2,0,0,0,0]$$
,  $K[n] = [1,0,1]$ 

|                      | Input                 | I*K               |
|----------------------|-----------------------|-------------------|
| Input (untranslated) | [0,0,0,0,1,2,0,0,0,0] | [0,0,1,2,1,2,0,0] |
| Shifted by one       | [0,0,0,0,0,1,2,0,0,0] | [0,0,0,1,2,1,2,0] |
| Shifted by two       | [0,0,0,0,0,0,1,2,0,0] | [0,0,0,0,1,2,1,2] |



- Where does it fail in CNNs?
- Equivariance holds for dense pooling and convolution: stride = 1
- Subsampling (stride>1) breaks equivariance
- Consider previous example with a stride of 2

$$I = [0,0,0,0,1,2,0,0,0,0]$$
,  $K[n] = [1,0,1]$ 

|                      | Input                 | I*K       |
|----------------------|-----------------------|-----------|
| Input (untranslated) | [0,0,0,0,1,2,0,0,0,0] | [0,1,1,0] |
| Shifted by one       | [0,0,0,0,0,1,2,0,0,0] | [0,0,2,2] |
| Shifted by two       | [0,0,0,0,0,0,1,2,0,0] | [0,0,1,1] |



# Shiftability

- Stride does not completely break equivariance
- Subsampling can 'scale' shifts if factors of the subsampling factor

$$I = [0,0,0,0,1,2,0,0,0,0]$$
,  $K[n] = [1,0,1]$ 

|                      | Input                 | I*K       |
|----------------------|-----------------------|-----------|
| Input (untranslated) | [0,0,0,0,1,2,0,0,0,0] | [0,1,1,0] |
| Shifted by one       | [0,0,0,0,0,1,2,0,0,0] | [0,0,2,2] |
| Shifted by two       | [0,0,0,0,0,0,1,2,0,0] | [0,0,1,1] |



## How does this relate to invariance?

- Fully equivariant
- Conv and pooling output is equivalent for translations
- Shift still occurs in the fully connected layer

| 1 | 0 | 1     |
|---|---|-------|
|   |   | <br>0 |
| 1 | 0 | 1     |
|   |   | 0     |



## How does this relate to invariance?

- Fully equivariant
- Conv and pooling output is equivalent for translations
- Shift still occurs in the fully connected layer

| 0 | 1 | 0     |
|---|---|-------|
|   |   | <br>1 |
| 0 | 1 | 0     |
|   |   | 1     |



# Signal Movement and Signal Similarity

 Signal Similarity - How much of the untranslated signal's output is preserved after translation



 Signal Movement - How far the translated output has moved from the original position of the untranslated output





## Local Homogeneity

- How can we preserve signal similarity and reduce signal movement?
- Subsampling disregards intermediary samples
- Signal similarity can be preserved when subsampling if input is homogenous in accordance with the subsampling factor

Input: 0000002233112200000

| Shift | Subsampled Output |
|-------|-------------------|
| 0     | 000231200         |
| 1     | 000231200         |
| 2     | 000023120         |
| 3     | 000023120         |



# Pooling/Filtering

- Pooling reduces the variance of a given input
- Provides more similarity between neighbouring pixels

- Strided pooling:
  - Improves signal similarity
  - Reduces signal movement by subsampling
  - Results in greater translation invariance



## Measuring translation invariance

- Entire test set is randomly translated up to a maximum shift
- Translated and untranslated test set is passed through model
- Each sample's two 10-dimensional output vectors are compared
- Compared using cosine similarity
- Average cosine similarity is taken across all samples



## **Experimental Setup**

- Input zero padded to 40x40
- Four 3-Layer CNNs trained on MNIST data set
- Hyperparameters are optimized converge to 100% train accuracy
- Besides early stopping no regularization

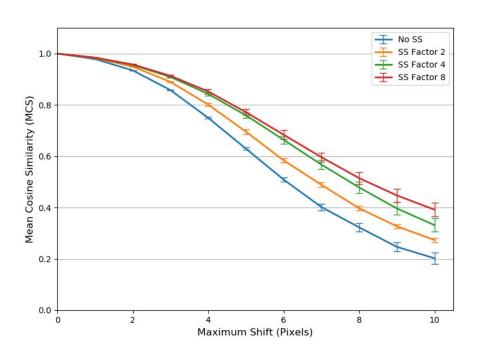


## **MNIST Architecture**

| Layer | Size | Stride |
|-------|------|--------|
| Conv  | 3x3  | 1      |
| Pool  | 2x2  | 1/2    |
| Conv  | 3x3  | 1      |
| Pool  | 2x2  | 1/2    |
| Conv  | 3x3  | 1      |
| Pool  | 2x2  | 1/2    |



## Results - MNIST





- 16 three layer CNNs are trained
- Varying kernel size and subsampling factor
- Input is padded to 50x50

| Subsampling Factor | Kernel Size |       |       |       |
|--------------------|-------------|-------|-------|-------|
| 3.50 Sent          | 2x2         | 3x3   | 4x4   | 5x5   |
| 1                  | 0.630       | 0.598 | 0.595 | 0.618 |
| 2                  | 0.554       | 0.635 | 0.683 | 0.731 |
| 4                  | 0.622       | 0.674 | 0.759 | 0.789 |
| 8                  | 0.610       | 0.660 | 0.762 | 0.791 |



- 16 three layer CNNs are trained
- Varying kernel size and subsampling factor
- Input is padded to 50x50

| Subsampling Factor | Kernel Size |       |       |       |
|--------------------|-------------|-------|-------|-------|
|                    | 2x2         | 3x3   | 4x4   | 5x5   |
| 1                  | 0.630       | 0.598 | 0.595 | 0.618 |
| 2                  | 0.554       | 0.635 | 0.683 | 0.731 |
| 4                  | 0.622       | 0.674 | 0.759 | 0.789 |
| 8                  | 0.610       | 0.660 | 0.762 | 0.791 |



- 16 three layer CNNs are trained
- Varying kernel size and subsampling factor
- Input is padded to 50x50

| Subsampling Factor | Kernel Size |       |       |       |  |
|--------------------|-------------|-------|-------|-------|--|
| and a series       | 2x2         | 3x3   | 4x4   | 5x5   |  |
|                    | 0.630       |       |       | l .   |  |
| 2                  | 0.554       | 0.635 | 0.683 | 0.731 |  |
| 4                  | 0.622       | 0.674 | 0.759 | 0.789 |  |
| 8                  | 0.610       | 0.660 | 0.762 | 0.791 |  |



- 16 three layer CNNs are trained
- Varying kernel size and subsampling factor
- Input is padded to 50x50

| Subsampling Factor | Kernel Size |       |       |       |
|--------------------|-------------|-------|-------|-------|
|                    | 2x2         | 3x3   | 4x4   | 5x5   |
| 1                  | 0.630       | 0.598 | 0.595 | 0.618 |
| 2                  | 0.554       | 0.635 | 0.683 | 0.731 |
| 4                  | 0.622       | 0.674 | 0.759 | 0.789 |
| 8                  | 0.610       | 0.660 | 0.762 | 0.791 |



#### **Results - Generalization**

- Improved generalization for some subsampling and filtering
- Too much filtering or subsampling decreases generalization
- Slight trade-off between invariance and generalization

| Subsampling Factor | Kernel Size |       |       |       |
|--------------------|-------------|-------|-------|-------|
|                    | 2x2         | 3x3   | 4x4   | 5x5   |
| 1                  | 72.33       | 75.00 | 76.10 | 76.00 |
| 2                  | 74.43       | 77.00 | 77.57 | 76.69 |
| 4                  | 73.94       | 76.72 | 77.25 | 76.76 |
| 8                  | 72.53       | 75.31 | 76.69 | 75.95 |



#### Conclusion

- Subsampling, when combined with sufficient filtering, improves translation invariance in CNNs
- Too much subsampling and/or filtering reduces test accuracy
- Several other things also tested, such as data augmentation, anti-aliasing filters, and global average pooling.



# Thank you

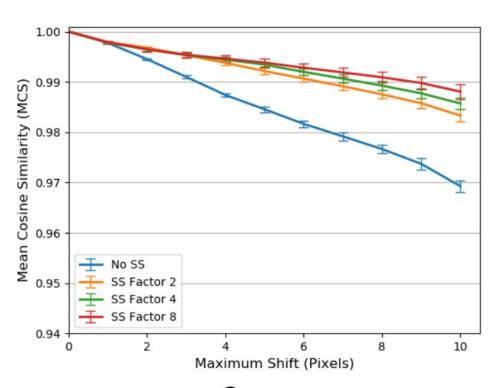


### Results - Learned Invariance

- Does this pattern hold when trained on a translated train set?
- Train set samples randomly translated up to 8 pixels before training
- Translation invariance is measured in the same way



## Results - Learned Invariance





# Results - Anti-aliasing

| Subsampling | Factor AA | MNIST | CIFAR |
|-------------|-----------|-------|-------|
| 1           | No        | 0.248 | 0.630 |
|             | Yes       | 0.329 | 0.518 |
| 4           | No        | 0.383 | 0.620 |
|             | Yes       | 0.654 | 0.710 |
| 8           | No        | 0.447 | 0.611 |
|             | Yes       | 0.638 | 0.690 |



